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Abstract

Qualitative spatial reasoning (QSR) pursues a symbolic approach to reason-
ing about a spatial domain. Qualitative calculi are defined to capture domain
properties in relation operations, granting a relation algebraic approach to rea-
soning. QSR has two primary goals: providing a symbolic model for human
common-sense level of reasoning and providing efficient means for reasoning.
In this paper, we dismantle the hope for efficient reasoning about directional
information in infinite spatial domains by showing that it is inherently hard to
decide consistency of a set of constraints that represents positions in the plane
by specifying directions from reference objects. We assume that these refer-
ence objects are not fixed but only constrained through directional relations
themselves. Known QSR reasoning methods fail to handle this information.
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1. Introduction

Qualitative spatial reasoning (QSR) [1] is the subfield of knowledge represen-
tation and symbolic reasoning that represents knowledge about spatial domains
by finite sets of named qualitative relations. One particular aim of qualitative
approaches is to model human common-sense understanding of space. This
makes qualitative approaches useful, for instance, in human-machine interac-
tion. Qualitative reasoning is considered to provide efficient means for reasoning
about continuous, infinite but structured domains such as space or time.

Qualitative relations state relationships of variables ranging over a spatial
domain. Thus, consistency problems in qualitative spatial reasoning are closely
related to constraint-based reasoning over mostly infinite domains and so QSR
shares much of the terminology of constraint-based reasoning. One central task
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in QSR is to decide consistency of qualitative constraint networks, i.e., constraint
networks in which only qualitative relations are used as constraints. In the fol-
lowing we refer to this problem as the consistency problem. Deciding consistency
of qualitative constraint networks differs from classical constraint satisfaction
problems (CSP) in that the infinite domain prevents exhaustive search. QSR
techniques rely on the relation algebraic structure of qualitative calculi [2] that
is captured in converse and composition tables. While reasoning in full qualita-
tive calculi is mostly NP-complete, tractable sub-algebras have been identified
for some calculi [3, 4].

Directional calculi consist of a set of qualitative directional relations that
coarsely specify the direction in which an object is positioned. Positions are
considered to be points in the Euclidean plane and directions are given with
respect to a frame of reference. Qualitative representations of directional in-
formation may involve a single, global frame of reference or they may employ
different frames of reference that are determined by reference objects. In this
paper we are concerned with directional relations that involve different refer-
ence objects, i.e., we are not concerned with cardinal directions that use a single
frame of reference and for which reasoning is known to be tractable [5]. Two
important examples for reference objects are directed lines (establishing direc-
tions “left of” or “right of” the line, for instance) or pairs of points to determine
triangle orientations (see for example [6]). Directional calculi are important for
handling knowledge that makes use of relative or egocentric frames of references.
In particular, directional calculi draw their motivation from tasks in high-level
agent control [7] or from interpreting natural language for robot instruction [8].
In this article we show that reasoning about directional relations is inherently
intractable. By reducing the problem of matroid realizability to the consistency
problem we show that reasoning with directional relations is NP-hard, NP mem-
bership being an open question. Our result has impact on reasoning with any
qualitative calculus that is expressive enough to distinguish “left of” from “right
of” which includes flip-flop [6, 9], double cross [10, 11], dipole [12], OPRA [13],
TPCC [14]. For all such calculi, the existing relation algebraic approach is too
weak for deciding consistency problems and all reasonable sub-algebras remain
NP-hard.

This paper is organized as follows. First we give basis definitions of qualita-
tive reasoning and discuss related work. In Section 3 we explain the principle
steps of our proof. After formally introducing oriented matroids (Section 4) we
give in Section 5 new intractability results for several directional calculi. In Sec-
tion 6 we sketch a new approach to deciding consistency in directional calculi.
We conclude by discussion and outlook.

2. Qualitative Constraint-Based Reasoning

The basic concept of qualitative spatial reasoning is the qualitative calculus
[2] which comprises a set of qualitative relations and relation algebraic operations
that for many calculi meet conditions for a relation algebra in the sense of Tarski.
For the context of this paper, only the relations are important.
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Definition 1 (qualitative relation). Let D be a non-empty set called domain
and let B = {r1, r2, . . . , rn} be a set of k-ary relations over D. B is called the set
of base relations and the set of all unions of base relations R = {

⋃
r∈b |b ∈ 2B}

is called the set of qualitative relations. Commonly, a qualitative relation ri∪ rj
is denoted {ri, rj}.

Qualitative relations express the relationship of variables ranging over the
domain by base relations or disjunctions thereof.

Definition 2 (QCSP). Let R = {r1, r2, . . . rn} be a set of k-ary qualitative
relations over domain D and let X be a set of variables ranging over D. A
qualitative constraint is a formula X1 . . . Xk−1 riXk with variables Xj ∈ X . For
a valuation φ : X → D we say that a qualitative constraint X1 . . . Xk−1 r Xk is
satisfied if (φ(X1), φ(X2), . . . , φ(Xk)) ∈ r holds.

A qualitative constraint network is a set of variables and constraints such
that for any k-tuple of variables exactly one constraint is defined. If constraints
only involve base relations, it is called a scenario for short.

The problem of deciding whether there exists a valuation of satisfying all
qualitative constraints over a set of qualitative relations R is called QCSP(R).

Qualitative spatial reasoning exploits the algebraic structure of qualitative
relations. The consistency problem is tackled using the algebraic closure al-
gorithm [15], an adaption of Mackworth’s AC-3 algorithm [16] for enforcing
path-consistency in finite domain CSPs. Algebraic closure exploits the compo-
sition operation to rule out local inconsistencies in a constraint network. For
some calculi algebraic closure implies path-consistency and can already be a
sufficient condition for consistency [17]. In order to apply decision procedures
for the consistency problem it is commonly required that algebraic closure is
applicable to decide consistency of scenarios [15, 18]. For example, this is the
case in the RCC calculus [19] or Allen’s interval algebra [20]. Given that alge-
braic closure decides consistency for scenarios, networks involving disjunctions
can then be refined to base relations by means of a backtracking search and
consistency can be decided [15]. This approach gains efficiency from exploit-
ing maximal tractable subsets, i.e., maximal sets of relations for which algebraic
closure decides consistency [21].

To put it in a nutshell, qualitative spatial reasoning pursues a relation alge-
braic approach which relies on the existence of efficient decision algorithms for
consistency of scenarios such that reasoning in the full algebra (i.e., including
disjunctive relations) can still be tackled in NP.

Previous research investigating the tractability of directional calculi identi-
fied intractable sub-algebras that involve disjunctions of base relations [11, 14,
12]. Particularly ternary point calculi are so expressive that encoding NOT-
ALL-EQUAL-3-SAT or BETWEENNESS instances is straightforward (cp. [11,
22]) when using disjunctions of base relations. In this paper we significantly
refine these results by showing that directional information is inherently in-
tractable, i.e., even deciding consistency of scenarios is intractable.

3



acyclic, uniform
oriented matroid

uniform oriented
matroid

oriented matroid theory

decision problem
consistency of
L/R constraint networks

decision problem
realizability of
oriented matroids (ROM)

①

②

③

(a)

1

(b)

Figure 1: (a) Steps in the reduction of decision problems about directional information to
NP-hard matroid realizability (b) Projective plane z = 1

3. Proof Sketch

In the following we describe the general idea of how to show NP-hardness
of consistency problems that constrain a point position to be either left of or
right of a line. Essentially, we develop a reduction from a realizability problem
in combinatorial geometry to a consistency problem of qualitative constraints.
This is captured by the central Theorem 8 that directly applies to all calculi
that contain relations “left of” and “right of”. As our reductions are reversible
we are also able to show that if the geometric realizability problem turns out to
be in NP, consistency in left/right networks can also be decided in NP. Hence,
both problems are tightly related to one another. Motivated by Theorem 14 we
conclude a conjecture that NP-hardness also applies to any calculus which refines
left/right relations. Figure 1 (a) gives an overview of our proof which consists
of three steps that all make use of the theory of oriented matroids (see [23]). In
short, oriented matroids generalize the notion of geometric arrangements from
a combinatorial perspective.

We start with the NP-hard problem of matroid realizability (ROM) which
remains NP-hard if we restrict it to so-called uniform matroids (step 1 in the
proof diagram). To represent oriented matroids we choose the notion of chiro-
topes that allows us to connect the combinatorial view of chirotopes to that of
orientation of vector sequences.

In the second step of the proof we enforce a certain property (acyclicity) in
the oriented matroid that is a necessary condition of geometric realizability in
the plane (step 2 in the proof diagram, Lemma 7 and Algorithm 1 in the proof).

Step 3 concludes the proof by exploiting a duality between orientation of vec-
tors in R3 and left/right relations between triples of points in the plane. To il-
lustrate this duality, consider the projection on the plane {(x, y, z) ∈ R3 | z = 1}
shown in Figure 1 (b) which identifies (x, y, z) ∈ {(x, y, z) ∈ R3 |z 6= 0} with
(xz ,

y
z , 1). Suppose points A,B,C are above the XY -plane and form a posi-

tively oriented basis of R3 (i.e., interpreting the 3D points as column vectors
of a 3× 3 matrix, the determinant of this matrix is positive). Then, under the
given projection, C ′ is left of the directed line from A′ to B′ (cp. Figure 1 (b)).
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Using a similar projection we construct a left/right constraint problem which is
consistent only if the initial matroid is realizable.

4. Capturing Directional Information by Oriented Matroids

Oriented matroids can be considered combinatorial generalizations of spatial
arrangements. They provide a broad model to describe information about posi-
tion and orientation geometrically (with respect to given set of points and lines,
Definition 3) as well as purely combinatorially (Definition 5), and have also
been proposed as a discrete spatial representation [24, 25]. Oriented Matroids
allow us to abstract a concrete spatial reasoning problem in R2 to a problem in
combinatorial geometry.

In this section we introduce oriented matroids first as a mathematical object
from a concrete vector space and then as an abstract combinatorial object. For
in-depth coverage refer to [23]. From the different ways of defining oriented
matroids, the approach using the notion of chirotopes presents itself for char-
acterizing directional information. This leads to the following definition of an
oriented matroid with respect to a finite vector sequence V .

Definition 3 (The oriented matroid of V ). Let V = (v1, . . . , vn) be a finite
sequence of vectors in Rr spanning the space Rr, sign : R → {−1, 0,+1} a
function that returns the sign of its argument, and det(vi1 , vi2 , . . . , vir ) the de-
terminant of a r × r matrix having vi1 , vi2 , . . . , vir as its column vectors. The
oriented matroid of V is given by the map

χ
V

: {1, 2, . . . , n}r −→ {−1, 0,+1}

(i1, i2, . . . , ir) 7−→ sign(det(vi1 , vi2 , . . . , vir ))

which is called the chirotope of V. For r = 3 the map χ
V

records for each vector
triple whether it consists of linearly dependent vectors, a positively oriented
basis of R3, or a negatively oriented basis of R3 (0, +1, -1, respectively).

Example 4. The oriented matroid of V = (v1, v2, v3) with v1 = (1, 0, 0)T , v2 =
(0, 1, 0)T , v3 = (0, 0, 1)T is the map χ : {1, 2, 3}3 → {−1, 0,+1} with χ(1, 2, 3) =
χ(2, 3, 1) = χ(3, 1, 2) = 1 and χ(2, 1, 3) = χ(1, 3, 2) = χ(3, 2, 1) = −1. All other
triples represent linearly dependent vector triples, and thus map to 0.

In the following we introduce oriented matroids as combinatorial objects.
Unlike the previous definition, the following one is defined without a vector
sequence, i.e., it abstracts from an underlying geometry.

Definition 5 (Oriented matroid). An oriented matroid of rank r on E =
{1, 2, . . . , n} is a map given by

χ : Er −→ {−1, 0,+1},

called a chirotope, which satisfies the following three properties:
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1. χ is not identically zero.

2. χ is alternating, that is, χ(iσ(1), iσ(2), iσ(3)) = sign(σ)χ(i1, i2, i3) for all
i1, i2, i3 ∈ E and every permutation σ on {1, 2, 3}.

3. For every i1, i2, i3, i4, i5 ∈ E the set{
χ(i1, i2, i3)·χ(i1, i4, i5), −χ(i1, i2, i4)·χ(i1, i3, i5), χ(i1, i2, i5)·χ(i1, i3, i4)

}
either contains {−1,+1}, or it equals {0}.

We note that the second condition implies χ(i1, i2, i3) = 0 if two of three
arguments coincide. An oriented matroid is said to be uniform, if χ(i1, i2, i3) ∈
{−1,+1} for all pairwise different i1, i2, i3 ∈ E. We also note that an oriented
matroid χ

V
of a finite vector sequence V as defined in Definition 3 is an oriented

matroid on E, where E is the index set of V . In what follows we restrict ourselves
to oriented matroids of rank 3, which are relevant for the results of this paper.

Example 6. The map χ : {1, 2, 3, 4}3 → {−1, 0,+1} defined by χ(1, 2, 3) =
χ(1, 3, 4) = −1, and χ(1, 2, 4) = χ(2, 3, 4) = +1, where the remaining values
for χ are to be derived by permuting the triples and changing the signatures
appropriately (e.g., χ(1, 3, 2) = 1 = −χ(1, 2, 3)), is a uniform oriented matroid
of rank 3.

Now that we have the abstract definiton of an oriented matroid, a natural
question to ask is:

Given an oriented matroid χ on E = {1, . . . , n}, is there a sequence
V = {v1, . . . , vn} of spanning vectors in Rr, such that χ is the ori-
ented matroid of V , i.e., χ = χ

V
?

To exemplify this question, we take the oriented matroid from Example 6.
Then a realization of χ is

v1 = (−1, 0,−1), v2 = (0, 1, 1), v3 = (0,−1, 1), v4 = (1, 0,−1),

since χ(i, j, k) = sign(det(vi, vj , vk)) = χ
V

(i, j, k) for all i, j, k ∈ {1, . . . , 4}.
The aforementioned problem is the so-called realizability problem for oriented

matroids (ROM) which is NP-hard for oriented matroids of rank 3 and higher
[26, 27], the tightest complexity bound following from [28] is exponential time
with respect to the number of vectors.

A slightly modified version of ROM is the realizability problem for uniform
oriented matroids (RUOM), where only oriented matroids are considered that
do not contain zero in the range. RUOM is also NP-hard in the number of
vectors for matroids of rank 3 and higher [27].

Now we establish a connection between a point configuration in a plane (the
domain of many qualitative spatial calculi) and a uniform oriented matroid.
Assume there exists a linear map l : R3 → R (i.e., a linear form), such that
the vector sequence V consists of vectors v1, . . . , vn with l(vi) > 0 for all i, i.e.,
the vectors as points in R3 are entirely contained in one of the open half-spaces
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determined by the (hyper-)plane {x ∈ R3 | l(x) = 0}. Then we can project the
vectors vi to points in an affine plane A2 defined by

A2 := {x ∈ R3 | l(x) = 1},

where we associate each vector vi with point 1
l(vi)

vi ∈ A2 for all i. An oriented

matroid of V with this property is called acyclic (see Figure 2). The follow-
ing lemma states that determinants of vector triples give us a necessary and
sufficient condition for deciding whether an oriented matroid is acyclic.

v3 = (0,−1, 1)

y

z

x

o

v1 = (−1, 0,−1)

v4 = (1, 0,−1)

v2 = (0, 1, 1)

v4 = (−1, 0, 1)

y

z

x

o

v2 = (0, 1, 1)
v3 = (0,−1, 1)

v1 = (1, 0, 1)

Figure 2: Examples of non-acyclic and acyclic vector sequences in R3. The vector sequence
on the left represents an oriented matroid that is not acyclic, i.e., there is no open half-space
containing all the vectors v1, . . . , v4. By contrast, the vector sequence on the right is contained
in the open half-space R × R × R+ and accordingly, it is acyclic. Its affine representation is
equivalent to the one in Figure 4.

Lemma 7. Given a vector sequence V = (v1, . . . , vn) in R3 with det(vi, vj , vk) 6=
0 for all pairwise different 1 ≤ i, j, k ≤ n, then there exists a linear form l with
l(vi) > 0 for all i, if and only if there is a pair of two distinguished vectors in V ,
say v1 and v2, such that either det(v1, v2, vi) > 0 for all i > 2, or det(v1, v2, vi) <
0 for all i > 2.

Before proving the lemma let us consider the vector sequences in Figure 2
as an example: regarding the vector sequence on the left-hand side, there is
no vector pair (vi, vj), i 6= j, such that the determinant of the 3 × 3 matrix
(vi, vj , vk) is positive for all k, k 6= i, k 6= j or negative for all k, k 6= i, k 6= j.
The lemma states that therefore there exists no (hyper-)plane such that all
vectors are contained in one of the two open half-spaces determined by that
plane; the oriented matroid of this vector sequence is not acyclic. Considering
the vector sequence on the right-hand side of the figure, vectors v1 and v2 give
rise to positive determinants det(v1, v2, v3) and det(v1, v2, v4). According to the
lemma a half-space containing all vectors must exist and R × R × R+ is one
example. We note that by negating the vectors v1 and v4 in the first vector
sequence we obtain the second one. This is an essential step in the proof of
Theorem 8 for enforcing acyclicity of non-acylic oriented matroids.

Proof. Assume that there exists such a linear form l. Then there exists a cone
covering the convex hull of V which has a supporting hyperplane H in R3 given
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by linear combinations of two vectors of V , say v1, v2. Since the remaining
vectors of V are entirely contained in one of the open half-spaces determined by
H, it must be either det(v1, v2, vi) > 0 for all i > 2, or det(v1, v2, vi) < 0 for all
i > 2.

Now assume det(v1, v2, vi) > 0 for all i > 2. Then (v1 × v2)T · vi =
det(v1, v2, vi) > 0 for all i ≥ 3, where v1 × v2 denotes the vector product of
v1 and v2. We then define a linear form l by

l(x) =

(
v1 × v2 + ε

(
1

‖v1‖
v1 +

1

‖v2‖
v2

))T
x,

where ε > 0 is small enough, such that l(vi) > 0 for all i > 2. The fact l(v1) > 0

follows from l(v1) = 0 + ε
(
‖v1‖+

vT1 v2
‖v2‖

)
and the Cauchy-Schwartz inequality

‖v1‖‖v2‖ ≥ |vT1 v2|

l(v2) > 0 can be shown analogously. Altogether, l(vi) > 0 for all 1 ≤ i ≤ n.
We get the proof for the other case by switching the signs.

5. Hardness of Directional Calculi

In this section we show NP-hardness for individual directional calculi by
encoding RUOM into QCSP for individual calculi.

5.1. LR calculus

The LR calculus [6, 9] defines 9 ternary base relations for points posi-
tioned in the Euclidean plane R2. Figure 3 (a) shows the 7 base relations
for pairwise disjoint points, namely left, right, back, start, inbetween, end, and
front. Additionally, two relations of point superposition are considered, namely
dou = {(a, a, c)|a, c ∈ R2, a 6= c} and tri = {(a, a, a)|a ∈ R2}.

Theorem 8. QCSP(left , right) is NP-hard.

Proof. Since RUOM is NP-hard, it suffices to show that the encoding of the
RUOM into QCSP(left , right) can be done in polynomial time in the number
of vectors. Let a uniform oriented matroid χ : {1, . . . , n}3 7→ {−1,+1} of rank
3 be given. Since the LR calculus represents information about the plane but
the realization of a rank 3 matroid can cover the full 3D space, we generate a
new uniform oriented matroid χ′ which is equivalent in realizability and acyclic,
i.e., the realization of χ′ can be identified with a point configuration in an affine
space. This is accomplished by Algorithm 1, in which we make use of Lemma
7. Since there are three loops ranging over n, the complexity of the algorithm is
O(n3). Furthermore, if χ is realizable, i.e., χ is the (uniform) oriented matroid
of a vector sequence V = (v1, . . . , vn), then χ(i1, i2, i3) = sign(det(vi1 , vi2 , vi3))
for all (i1, i2, i3). As the determinant function is alternating, negating a vector
vk, k ∈ {1, . . . , n} changes the signs of χ(i1, i2, i3), if i1, i2 and i3 are pairwise

8



Algorithm 1 Algorithm for converting oriented matroid into an acyclic one
used by Theorem 8

1: function flipChi(χ)
2: . The elements 1 and 2 corresponds to v1 and v2 in Lemma 7.
3: χ′ ← χ
4: for i ∈ {3, 4, . . . , n} do
5: . We enforce χ′(1, 2, i) = 1 for all i = 3, . . . , n to apply Lemma 7.
6: if χ′(1, 2, i) = −1 then
7: χ′(1, 2, i)← 1
8: χ′(i, 1, 2)← 1
9: χ′(2, i, 1)← 1

10: χ′(1, i, 2)← −1
11: χ′(i, 2, 1)← −1
12: χ′(2, 1, i)← −1
13: . switch other signs of χ′ that involve i accordingly
14: for j ∈ {3, 4, . . . , n}, k ∈ {3, 4, . . . , n}, i 6= j, i 6= k, j 6= k do
15: χ′(i, j, k)← −χ′(i, j, k)
16: χ′(j, i, k)← −χ′(j, i, k)
17: χ′(j, k, i)← −χ′(j, k, i)
18: χ′(i, k, j)← −χ′(i, k, j)
19: χ′(k, j, i)← −χ′(k, j, i)
20: χ′(k, i, j)← −χ′(k, i, j)
21: end for
22: end if
23: end for
24: return χ′

25: end function

different and ij = k for a j ∈ {1, 2, 3}. This is reflected in line 8–21 of Algo-
rithm 1, as a consequence of enforcing χ(1, 2, i) = sign(det(v1, v2, vi)) = 1 for
all i > 2 to meet the condition in Lemma 7. With regards to equivalence of
realizability of χ and χ′ we note that the negations performed by the Algorithm
1 simply correspond to flipping vectors from the “negative” side of the hyper-
plane given by v1 × v2 to the “positive” side (see proof of Lemma 7). Thus, χ′

is realizable if χ realizable. Analogously, χ is realizable if χ′ realizable.
Finally, we encode χ′ into QCSP(left , right): The domain {1, 2, . . . , n} of χ′

is represented by variables {v1, v2, . . . , vn}. For each triple (i, j, k), i, j, k ∈ D
we have vi vj right vk, if χ′(i, j, k) = −1, whereas vi vj left vk, if χ′(i, j, k) = +1
(see Figure 4). As χ is uniform, χ(i, j, k) = 0 occurs if and only if two of
its three arguments coincide, giving no information about the general point
configuration. Thus, the case χ(i, j, k) = 0 does not need to be considered as a
constraint for the triple (vi, vj , vk).

According to the translation above, the oriented matroid χ′ is realizable if
and only if the corresponding qualitative constraint network is satisfiable.
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Figure 3: Qualitative relations defined by ternary directional calculi. (a) LR calculus point-
to-line relations (b) Double cross calculus [10], (c) TPCC [14]

Since our reduction can reversed, we are able to state the following theorems
that tighten the connection of RUOM and deciding consistency of left/right
constraints.

Theorem 9. QCSP(left , right) for scenarios is reducible to RUOM.

Proof. Let S be a left/right scenario and n be the number of variables in S.
We define the induced oriented matroid χ by assigning χ(i, j, k) = +1 to each
constraint vi vj left vk ins S, and χ(i, j, k) = −1 to each constraint vi vj right vk
in S, where i, j, k ∈ {1, . . . n} and pairwise different. There are altogether O(n3)
such assignments.

We then check whether χ is acyclic, which is the case if there exists a pair
(i, j), i, j ∈ {1, . . . , n} with χ(i, j, k) > 0 for all k ∈ {1, . . . , n}, k 6= i, k 6= j.
Determining the existence of such a pair can also be done in O(n3) time by
trying out all O(n2) candidates.

Since S is consistent if and only if χ is acyclic and realizable, it takes O(n3)
time to reduce QCSP(left , right) for scenarios to RUOM.

Corollary 10. If RUOM is in NP, than QCSP(left , right) for scenarios is in
NP too.

5.2. Dipole calculus

The dipole calculus [12] has been introduced as qualitative calculus about
path segments which are oriented line segments defined by start and end point—
see Figure 5 (a) for illustration. The calculus assumes all points to be in general
position, i.e., no three different points are positioned on the same line. The 24
dipole relations DRA24 represent all possible relative orientations of two dipoles
A = (sA, eA), B = (sB , eB). Dipole relations can be rewritten as sets LR re-
lations considering all 3-tuples of points: (sA, eA, sB), (sA, eA, eB), (sB , eB , sA),
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v4

v1
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v2
v3

Figure 4: A realization of a uniform oriented matroid χ : {1, 2, 3, 4}3 → {−1,+1} with
χ(1, 2, 3) = +1, χ(1, 2, 4) = +1, χ(1, 3, 4) = −1 and χ(2, 3, 4) = −1. Equivalently, we have
v1 v2 left v3; v1 v2 left v4; v1 v3 right v4 and v2 v3 right v4. Note that v3 and v4 are entirely
lying on one of the half-spaces determined by the hyperplane through v1 and v2 as generated
by Algorithm 1.

(sB , eB , eA). This makes rewriting QCSP(left , right) as QCSP(DRA24) straight-
forward.

Corollary 11. QCSP(DRA24) is NP-hard.

The original paper on the dipole calculus also considers a refined dipole
calculus which also handles multiple points on a line, but this does not affect
the orientation relations and their intractability.

5.3. OPRA calculus

The OPRAn family of calculi defines a set of directional relations for ori-
ented points (see Figure 5 (b) – (d)) with adjustable granularity parameter [13],
OPRA2n being a refinement of OPRAn. The granularity parameter n stands
for the number of dividing lines used to construct the relations (see Figure 5).
Refining OPRA1 to OPRA2 we have a new line distinguishing before (sec-
tors 3,4,5) and behind (sectors 0,1,7). Like the LR calculus, OPRAn makes
left/right distinctions.

Corollary 12. QCSP(OPRA1) is NP-hard.

Lemma 13. QCSP(behind , before) is NP-hard.

Proof. Relations behind , before can be bijectively mapped to left , right .

Theorem 14. Let L and R be finite refinements of the LR relations left and
right, i.e., L = {l1, l2, . . . , ln}, with left = l1∪ l2∪ . . .∪ ln and analogously for R.
If deciding QCSP(L∪R) is in NP, then Matroid realizability of rank 3 oriented
matroid is in NP too.
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Figure 5: Binary directional calculi (a) Example of a dipole base relation A lrrr B (sB Left
of A, eB Right of A, sA Right of B, eA Right of B) (b) Relation sectors defined by OPRA1

(c) Relation sectors defined by OPRA2 (d) Example of a OPRA2 relation A 2∠1
7B

Proof. Let the rank 3 oriented matroid be given by a chirotope so we can read
off relations left (χ(x, y, z) = −1) and right (χ(x, y, z) = +1). Relations left ,
right can be written as disjunctions of l1, l2, . . . , ln or r1, r2, . . . , rm, respectively.
Given a left/right decision problem one can non-deterministically select one
relation from each disjunction and decide the refined problem.

Corollary 15. If base relations of OPRA2 can be decided in NP, then Matroid
realizability of rank 3 matroid is in NP.

Since matroid realizability is extensively studied and NP membership of this
problem could not been shown yet, we conclude from theorem 14 the following
conjecture.

Conjecture 16. There is no directional calculus capable of expressing left and
right (by disjunction of base relations) such that consistency of constraint net-
works over its base relations can be decided in polynomial time.

5.4. Double cross calculus

The double cross calculus [10] is a ternary point configuration calculus which
defines 15 relations between pairwise disjoint points; see Figure 3 (b). As can be
seen in the figure, the double cross calculus is a refinement of the LR calculus.

5.5. Ternary point configuration calculus

In [14] a ternary point configuration calculus TPCC for robot localization
and navigation tasks is proposed. From the base relations defined by the calculus
(see Figure 3) it is easy to see that TPCC is a refinement of theOPRA2 calculus,
i.e., LR relations can be written as disjunctions of TPCC relations.1

1Since TPCC does not define half-line relations for all 45◦ angles as OPRA4 does, TPCC
is not a refinement of OPRA4.
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6. On Deciding Consistency of Directional Relations

NP-membership of RUOM is still an open problem and so the computational
complexity of qualitative reasoning about directional information remains open
too: left/right consistency can be decided in NP if and only if RUOM can be
decided in NP. We note that deciding consistency of directional constraints is
equivalent to the existential theory of the reals [23, 29]. This theory deals with
solvability of systems of polynomial equations and inequalities; only exponential
time algorithms are known so far. Therefore, computationally cheap approaches
that can decide a significant subset of directional information constraint prob-
lems are important. However, the common approach of QSR, decision by alge-
braic closure on scenarios is not effective for directional relations. Considering
the LR calculus, it is easy to construct algebraically closed, but inconsistent sce-
narios involving as few as 5 variables [22]: with respect to the classically used
binary composition all scenarios only containing the relations left and right are
algebraically closed anyway, but even for the more natural ternary composition
(cp. [30]) this counterexample holds. Considering the conditions for oriented
matroids we are able to give a much better approximation of QCSP(left , right)
than obtained by algebraic closure. Our approach is based on the following
realizability theorem.

Theorem 17 (Matroid Realizability [23]). All oriented matroids of rank 3 with
|E| ≤ 8 are realizable.

Hence, only testing the conditions of oriented matroids according to defini-
tion 5 we obtain a decision method for small instances that is more effective
than algebraic closure. Since we are considering qualitative relations left and
right only, condition 1 of definition 5 is always met. Condition 2 requires us to
check all permutations of triples (which can be done in O(n3) time) and it is
easy to see that condition 3, also known as Grassmann-Plücker conditions, can
be checked O(n5) time. Theorem 17 gives us that testing matroid conditions
decides consistency for up to size 8 (sub-)networks.

We note that this procedure has little higher complexity as checking algebraic
closure with respect to ternary composition for ternary calculi which is O(n4),
but it is more effective. Considering all 1024 constraint networks with 5 variables
and relations left and right , 53 of these meet the Grassmann-Plücker conditions
(and are thus realizable), whereas 544 are algebraically closed with respect to
ternary composition, i.e., testing realizability by algebraic closure yields 491
false positives.

7. Conclusion

In this article we have shown that directional calculi are inherently in-
tractable. Nevertheless, dealing with directional information is relevant to ap-
plications involving, e.g., robot instruction or natural language semantics [8].
We believe this is a motivation for future QSR research: identifying new reason-
ing methods to handle directional information. So far, QSR has focused on one
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single core method: deciding consistency of constraint networks only involving
(disjoint) base relations by the path-consistency method. As this polynomial-
time method does not decide consistency for any of the calculi discussed here,
future work in QSR must investigate alternative reasoning methods. Further-
more, it needs to be researched whether there exist tractable refinements of
directional constraints. This question is potentially hard to answer, since ex-
istence of a polynomially tractable finite refinement of the relations left , right
implies that NP-membership of RUOM (cp. Theorem 14) — an open question.
For practical applications it is also interesting to learn how good polynomial-
time methods can approximate consistency.
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